2.3.1. Последовательный поискЗадача поиска. Пусть заданы
линейные списки: список элементов
В=<К1,К2,К3,...,Кn> и список ключей V= Эффективность некоторого алгоритма поиска А оценивается максимальным Max{А} и средним Avg{А} количествами сравнений, необходимых для нахождения элемента V в В. Если Pi - относительная частота использования элемента Кi в В, а Si - количество сравнений, необходимое для его поиска, то n Max{А} = max{ Si, i=1,n } ; Avg{А} = Pi Si . i=1Последовательный поиск предусматривает последовательный просмотр всех элементов списка В в порядке их расположения, пока не найдется элемент равный V. Если достоверно неизвестно, что такой элемент имеется в списке, то необходимо следить за тем, чтобы поиск не вышел за пределы списка, что достигается использованием стоппера. Очевидно, что Max последовательного поиска равен N. Если частота использования каждого элемента списка одинакова, т.е. P=1/N, то Avg последовательного поиска равно N/2. При различной частоте использования элементов Avg можно улучшить, если поместить часто встречаемые элементы в начало списка. Пусть во входном потоке задано 100 целых чисел К1,К2,... К100 и ключ V. Составим программу для последовательного хранения элементов Кi и поиска среди них элемента, равного V, причем такого элемента может и не быть в списке. Без использования стоппера программа может быть реализована следующим образом: /* последовательный поиск без стоппера */ #includeС использованием стоппера программу можно записать в виде: /* последовательный поиск со стоппером */ #include2.3.2. Бинарный поискДля упорядоченных линейных списков существуют более эффективные алгоритмы поиска, хотя и для таких списков применим последовательный поиск. Бинарный поиск состоит в том, что ключ V сравнивается со средним элементом списка. Если эти значения окажутся равными, то искомый элемент найден, в противном случае поиск продолжается в одной из половин списка. Нахождение элемента бинарным поиском осуществляется очень быстро. Max бинарного поиска равен log2(N), и при одинаковой частоте использования каждого элемента Avg бинарного поиска равен log2(N). Недостаток бинарного поиска заключается в необходимости последовательного хранения списка, что усложняет операции добавления и исключения элементов . Пусть, например, во входном потоке задано 101 число, К1,К2,...,К100, V - элементы списка и ключ. Известно, что список упорядочен по возрастанию, и элемент V в списке имеется. Составим программу для ввода данных и осуществления бинарного поиска ключа V в списке К1,К2,...,К100. /* Бинарный поиск */ #include2.3.3. М-блочный поискЭтот способ удобен при индексном хранении списка. Предполагается, что исходный упорядоченный список B длины N разбит на M подсписков B1,B2,...,Bm длины N1,N2,...,Nm, таким образом, что B=B1,B2,..,Bm. Для нахождения ключа V, нужно сначала определить первый из списков Bi, i=1,M, последний элемент которого больше V, а потом применить последовательный поиск к списку Bi. Хранение списков Bi может быть связным или последовательным. Если длины всех подсписков приблизительно равны и M= N, то Max М-блочного поиска равен 2 N. При одинаковой частоте использования элементов Avg М-блочного поиска равен N. Описанный алгоритм усложняется, если не известно, действительно ли в списке имеется элемент, совпадающий с ключом V. При этом возможны случаи: либо такого элемента в списке нет, либо их несколько. Если вместо ключа V имеется упорядоченный список ключей, то последовательный или М-блочный поиск может оказаться более удобным, чем бинарный, поскольку не требуется повторной инициализации для каждого нового ключа из списка V. 2.3.4. Методы вычисления адресаМетоды вычисления адреса. Пусть в каждом из М элементов массива Т содержится элемент списка (например целое положительное число). Если имеется некоторая функция H(V), вычисляющая однозначно по элементу V его адрес - целое положительное число из интервала [0,M-1],то V можно хранить в массиве T с номером H(V) т.е. V=T(H(V)). При таком хранении поиск любого элемента происходит за постоянное время не зависящее от M. Массив T называется массивом хеширования, а функция H - функцией хеширования. При конкретном применении хеширования обычно имеется определенная область возможных значений элементов списка V и некоторая информация о них. На основе этого выбирается размер массива хеширования M и строится функция хеширования. Критерием для выбора M и H является возможность их эффективного использования. Пусть нужно хранить линейный список из элементов K1,K2,..,Kn, таких, что при Ki=Kj, mod(Ki,26)= mod(Kj,26). Для хранения списка выберем массив хеширования T(26) с пространством адресов 0-25 и функцию хеширования H(V)= mod(V,26). Массив T заполняется элементами T(H(Ki))=Ki и T(j)=0 если j (H(K1), H(K2),..,H(Kn)). Поиск элемента V в массиве T с присваиванием Z его индекса если V содержится в T, или -1, если V не содержится в T, осуществляется следующим образом int t[26],v,z,i; i=(int)fmod((double)v,26.0); if(t[i]==v) z=i; else z=-1;Добавление нового элемента V в список с возвращением в Z индекса элемента, где он будет храниться, реализуется фрагментом z=(int)fmod((doule)v,26.0); t[z]=v;а исключение элемента V из списка присваиванием t[(int)fmod((double)v,26)]=0;Теперь рассмотрим более сложный случай, когда условие Ki=Kj H(Ki)=H(Kj) не выполняется. Пусть V - множество возможных элементов списка (целые положительные числа), в котором максимальное число элементов равно 6. Возьмем M=8 и в качестве функции хеширования выберем функцию H(V)=Mod(V,8). Предположим, что B= При наличии коллизий усложняются все алгоритмы работы с массивом хеширования. Рассмотрим работу с массивом T[100], т.е. с пространством адресов от 0 до 99. Пусть количество элементов N не более 99, тогда в T всегда будет хотя бы один свободный элемент равный нулю. Для объявления массива используем оператор int static t[100];Добавление в массив T нового элемента Z с занесением его адреса в I и числа элементов в N выполняется так: i=h(z); while (t[i]!=0 && t[i]!=z) if (i==99) i=0; else i++; if (t[i]!=z) t[i]=z, n++;Поиск в массиве T элемента Z с присвоением I индекса Z, если Z имеется в T, или I=-1, если такого элемента нет, реализуется следующим образом: i=h(z); while (t[i]!=0 && t[i]!=z) if (i==99) i=0; else i++; if (t[i]==0) i=-1;При наличии коллизий исключение элемента из списка путем пометки его как пустого, т.е. t[i]=0, может привести к ошибке. Например, если из списка B исключить элемент K2, то получим массив хеширования в виде T=<0,K5,0,0,K4,K1,K3,0>, в котором невозможно найти элемент K4, поскольку H(K4)=3, а T(3)=0. В таких случаях при исключении элемента из списка можно записывать в массив хеширования некоторое значение непринадлежащее области значений элементов списка и не равное нулю. При работе с таким массивом это значение будет указывать на то, что нужно просматривать со средние ячейки. Достоинство методов вычисления адреса состоит в том, что они самые быстрые, а недостаток в том, что порядок элементов в массиве T не совпадает с их порядком в списке, кроме того довольно сложно осуществить динамическое расширение массива T. 2.3.5. Выбор в линейных спискахЗадача выбора. Задан линейный
список целых, различных по значению
чисел B= Поставленная задача может быть получена из задачи поиска j-того минимального значения заменой i=n-j+1 и поиском i-того максимального значения. Особый интерес представляет задача выбора при i=a/n, 0<a<1, в частности, задача выбора медианы при a=1/2. Все варианты задачи выбора легко решаются, если список B полностью отсортирован, тогда просто нужно выбрать i-тый элемент. Однако в результате полной сортировки списка B получается больше информации, чем требуется для решения поставленной задачи. Количество действий можно уменьшить применяя сортировку выбором только частично до i-того элемента. Это можно сделать, напри мер при помощи функции findi /* выбор путем частичной сортировки */ int findi(int *s, int n, int i) { int c,j,k; for (k=0; k<=i; k++) for (j="k+1;" j<="n;" j++) if (s[k] < s[j]) { c="s[k];" s[k]="s[j];" s[j]="c;" } return s[i]; }Эта функция ищет элемент с индексом i, частично сортируя массив s, и выполняет при этом (n*i) сравнений. Отсюда следует, что функция findi приемлима для решения задачи при малом значении i, и малоэффективна при нахождении медианы. Для решения задачи выбора i-того наибольшего значения в списке B модифицируем алгоритм быстрой сортировки. Список B разбиваем элементом K1 на подсписки B' и B", такие, что если Ki -B', то Ki>K1, и если Ki - B", то Ki<K1, и список B реорганизуется в список B',K1,B". Если K1 элемент располагается в списке на j-том месте и j=i, то искомый элемент найден. При j>i наибольшее значение ищется в списке B'; при j<i будем искать (i-j) значение в подсписке B". Алгоритм выбора на базе быстрой сортировки в общем эффективен, но для улучшения алгоритма необходимо, чтобы разбиение списка на подсписки осуществлялось почти пополам. Следующий алгоритм эффективно решает задачу выбора i-того наибольшего элемента в списке B, деля его на подсписки примерно равной величины. 1. Если N<21, то выбрать i-тый наибольший элемент списка B обычной сортировкой. 2. Если N>21 разделим список на P=N/7 подсписков по 7 элементов в каждом, кроме последнего в котором mod(N,7) элементов. 3. Определим список W из медиан полученных подсписков (четвертых наибольших значений) и найдем в W его медиану M (рекурсивно при помощи данного алгоритма) т.е. (P/2+1)-й наибольший элемент. 4. С помощью элемента M разобьем список B на два подсписка B' с j элементами большими или равными M, и B" c N-j элементами меньшими M. При j>i повторим процедуру поиска сначала, но только в подсписке B'. При j=i искомый элемент найден, равен M и поиск прекращается. При j < i будем искать (i-j)-тый наибольший элемент в списке B". /* алгоритм выбора делением списка почти пополам */ int search (int *b, int n, int i) { int findi(int *, int, int); int t, m, j, p, s, *w; if (n<21) return findi(b, n, i); /* шаг 1 */ p="(int)(n/7);" w="calloc(p+1,sizeof(int));" /* шаги 2 и 3 */ for (t="0;" t < p; t++) w[t]="findi(b+7*t," 7, 3); if (n%7!="0)" { w[p]="findi(b+7*p,n%7,(n%7)/2);" p++; } m="search(w," p, p/2); free (w); for (j="0," t="0;" t < n; t++) /* шаг 4 */ if (b[t]>=m) j++; if (j>i) { for (p=0, t=0; p < n; t++) if (b[t]>=m) { b[p]=b[t]; p++; } m=search(b, j, i); /* поиск в B" */ } if (j < i) { for (p=0, t=0; t < n; t++) if (b[t] < m) b[p++]=b[t]; m=search(b, n-j, i-j); /* поиск в B" */ } return m; }Рекурсивная функция search реализует алгоритм выбора i-того наибольшего значения. Для ее вызова можно использовать следующую программу #includeИспользуя метод математической индукции, можно доказать, что для функции search требуется выполнить в самом неблагоприятном случае 28*N сравнений. Действительно, если N<21, то выполнение функции findi потребует сравнений порядка N*(N-1)/2, т.е. меньше чем 28*N. Предположим, что для любого T<N количество сравнений при выполнении функции search не более 28*T и подсчитаем, сколько сравнений потребуется функции search при произвольном значении N. Для поиска медианы в каждом из подсписков функцией findi требуется не более 7*(7-1)/2=21 сравнений, а для формирования массива W в целом не более 21*(N/7)=3*N сравнений. По предположению индукции для поиска медианы в массиве W длины N/7 требуется 28*(N/7)=4*N сравнений. После удаления из B части элементов с помощью медианы в B' (или в B") останется не более N*5/7 элементов, и для удаления ненужных элементов необходимо количество сравнений порядка N. Для поиска в оставшейся части массива (в B' или B") по предположению индукции требуется не более 28*(N*5/7)=20*N сравнений. Таким образом, всего потребуется 3*N+4*N+N+20*N=28*N сравнений, т.е. выдвинутое предположение доказано. |